Higher Education in West Bengal – A Critical Appraisal

Ms Damayanti Sen
Research Scholar
Department of Economics
Rabindra Bharati University
Kolkata
West Bengal
India
Email: damayantisen20@gmail.com
Mobile: 9748197287

Abstract
West Bengal, one of the major states of India, is recognized for its rich legacy in education. West Bengal’s strategic location, sharing three international boundaries and its sixth largest contribution to India’s GDP, puts heavy demand on the higher education sector of the state. The paper analyses the higher education scenario in the state from various aspects. The government is in no dearth of policies that advance higher education. The state has experienced expansion in the higher education infrastructure, though mostly not at par with all-India level. Sopher’s Index assumes high values for participation, attainment and labour market outcome indicators, proving the prevalence of disparity between West Bengal vis-à-vis All-India level. Gender Parity Index of West Bengal is also lagging behind that of India, though there is a tendency to converge over time. Cluster analysis shows the existence of disparity across the districts of West Bengal. Unidimensional and multidimensional indices of inequality also show evidence of disparity across the districts. Thus, the paper concludes that there is need to focus on achieving the All-India targets to benefit the whole state and also need for reducing district-wise disparity across the state, so that the benefits reach every corner of the state.

Keywords: West Bengal, India, higher education, Sopher’s Index, Gender Parity Index, cluster analysis

INTRODUCTION
Being a resident of West Bengal, it is a special curiosity to look into the specific situation prevailing in this state as compared to the rest of India. West Bengal has always been looked upon for its rich legacy in education. Currently it boasts of 46 Universities, comprising 21 state-aided universities, 6 state specialized universities, 1 deemed university, 8 central universities and institutes of higher learning and 10 private universities. West Bengal’s strategic location, sharing three international boundaries with Bangladesh, Bhutan and Nepal, and its sixth largest contribution to India’s GDP, naturally puts heavy demand on the higher education sector of the state to emerge as a knowledge-based economy. Given its population of 91.34 million people which is as high as countries of Germany, Vietnam, the state is bound to shoulder a great responsibility to provide appropriate higher education to its large aspiring population. Besides, the tertiary sector contributes maximum to the state GDP (65.52% of
Net State Domestic Product) (Reserve Bank of India [RBI], 2017). This naturally reflects the heavy demand on the state to come up as a knowledge-based economy. Given this backdrop, it is extremely important to identify the challenges and bottlenecks of the higher education system prevalent in the state, and this paper is devoted to the same, with the intention of projecting the state into the path of higher growth and development.

The paper is organized in the following way – Research Questions and Objectives are presented after introduction. Then, the data and methodology are given in details. Results are presented, followed by main findings of the paper and thereafter comes the conclusion. References are given in APA style at the end.

RESEARCH QUESTIONS AND OBJECTIVES

To assess the higher education scenario in West Bengal, it is enticing to ask the questions

1. How conducive have the higher education policies been with regards to enhancing the state?
2. How is the state faring in higher education in comparison to the All-India level?
3. Within West Bengal, is there parity in growth or is the growth scattered and uneven?

Thus, the objective is to give an overview of the policies of the state government over time and also, study the present situation prevailing in West Bengal – a study focusing on inter-district comparison as well as comparison vis-à-vis India.

DATA AND METHODOLOGY

Data Sources: The study is based on secondary data from the following sources:
(a) Data on enrolment and number of colleges of overall Bengal as well as districts of the state have been obtained from All India Survey on Higher Education (AISHE) website.
(b) Population data of the districts have been obtained from Census 2011 website.
(c) Expenditure of the state government on higher education has been collected from State Higher Education Plan (2014).

Methodology

a. Overall Comparison of West Bengal vis-à-vis India: To compare the state’s position in relative terms, Sopher’s Index has been used. If X1 and X2 represent the respective percentage of the variables of India and West Bengal, then the Sopher’s index of inequality D is:

\[D = \log \left(\frac{X_2}{X_1} \right) + \log \left(\frac{Q - X_1}{Q - X_2} \right) \]

The objective of taking logarithm is to reduce the levelling off effects (region with high level of attainment may have low level of disparity and vice versa). Sopher’s Index has a number of useful properties like (1) It ranges from minus infinity to plus infinity and each of these extremes are possible if one group totally lacks the property or when all members of one group have the property; (2) Obviously if there is no inequality then D=0. Therefore, any deviation from zero is inequality. (3) A positive value implies X2 has higher values than X1, while a negative value indicates the reverse. Also, higher the absolute value of D, higher the inequality; (4) The sign is reversed when the disparity is measured in the reverse direction, that is, rural-urban gap is made urban-rural gap; (5) the sign also gets reversed when the absence of the property is measured, that is to say, rural-urban disparity in higher education
enrolment is the reverse of rural-urban disparity in higher education non-participation; (6) The index is additive, that is, the sum of disparity between groups A and B and the disparity between B and C, is equal to the disparity between groups A and C.

b. Overall Growth in participation and infrastructure compatibility testing: The growth rates of enrolment, colleges, eligible population and teachers over the years is calculated as
\[g_t = \frac{x_t - x_{t-1}}{x_{t-1}} \times 100. \]
It is also statistically tested whether there is significant difference between the following pairs of growth rates:
(a) Growth rate of enrolment – Growth rate of colleges
(b) Growth rate of eligible population - Growth rate of colleges

c. Calculation of Gross Enrolment Ratio and Colleges Per Lakh Eligible Population for the districts for 2011-12 and 2018-19: Gross Enrolment Ratio (GER) in Higher education in India is calculated for 18-23 years of age group. GER is the total enrolment in higher education, regardless of age, expressed as a percentage to the eligible official population (18-23 years) in the given period.

Based on AISHE data for 2011-12 and 2018-19 and Census data on Population, the GER of each district has been calculated in the following way:
(a) In 2011-12 there were 19 districts in West Bengal and in 2018-19 there are 23 districts in West Bengal, with Kalimpong, Alipurduar, Jhargram and Paschim Bardhaman as the new additions. To maintain parity we have merged the four new districts’ data with the corresponding previous districts to which they belonged for the year 2018-19.
(b) Based on the AISHE data on the estimated total population of the age group 18-23 for West Bengal, and the data on the population of the age group of each district from Census 2011, we calculated the population of the districts for the year t as
\[P_d^t = P_t^t \times r_d^t, \]
where \(P_d^t \) is the estimated total population for age group 18-23 of district d in the year t, \(P_t^t \) is the estimated total population for age group 18-23 for West Bengal for the year t, and \(r_d^t \) is the percentage of population of the age group 18-23 contained in district d as per Census 2011. Gross Enrolment Ratio (GER) for year t for each district is then calculated as
\[GER_d^t = \left(\frac{ER_d^t}{P_d^t} \right) \times 100, \]
where \(GER_d^t \) is the estimated Gross Enrolment Ratio in higher education in year t for district d, \(ER_d^t \) is the total enrolment in higher education in the district d in the year t, as per AISHE. Colleges per lakh eligible population for each district is calculated.

d. Cluster Analysis of the Districts of West Bengal: To compare the development of the districts of West Bengal with respect to the above two higher education parameters, the chapter has made use of hierarchical cluster analysis of the standardized values of the chosen variables for the two years 2011-12 and 2018-19. Cluster analysis is a tool for examining unstructured multivariate data. Clustering is a statistical tool to organize a given data set into homogeneous subgroups, or “clusters.” The paper has used the Hierarchical Clustering Technique to analyse the data with the help of the SPSS software. The clusters are highlighted with the help of maps of West Bengal, prepared with the help of the website https://gramener.com/indiamap/.

e. Inequality Indices for district-wise disparity in West Bengal: Taking the two indicators on GER and Colleges per thousand eligible population, we have looked at district-wise disparity through two approaches. First, we apply the individual approach, where each dimension’s inequality is calculated and analysed one at a time. To capture individual
inequality, we calculate the Gini Coefficient for each indicator for each of the two periods 2011-12 and 2018-19.

Gini coefficient \(G = 1 + \frac{1}{n} - \frac{2}{n^2} \bar{X} \left(X_1 + 2X_2 + 3X_3 + \ldots + nX_n \right) \), where \(n \) is the number of observations in the series, \(\bar{X} \) is the average of the observed values, \(X_1, X_2, X_3, \ldots \) are observed values arranged in descending order. The value of the Gini Coefficient measures the extent of variation. If \(G = 0 \), then there is no variation. Higher the values of \(G \), higher the variation in the observed values in the series.

Second, we calculate multidimensional inequality indices using the Maasoumi method. The logic is inequality in any of these indicators is going to increase the overall disparity across the states and hence reduce the overall well-being of the country. So, an overall multidimensional inequality index is constructed. First, standardization of the indicators is done by dividing each value by the mean. Next, the equation used to aggregate the two dimensions into a single well-being measure is listed below:

\[
S_i = \left(\sum_{k=1}^{2} w_k Z_{ik}^{\beta_k} \right)^{1/\beta}, \beta \neq 0 \text{ and } S_i = \prod_{k=1}^{2} (Z_{ik})^{w_k} \beta = 0,
\]

where \(S_i \) is the well-being measure of person \(i \), \(w_k \) is the weight of dimension \(k \), \(Z_{ik} = f(X_{ik}) \), \(X_{ik} \) is the value of dimension \(k \) for person \(i \), \(f() \) is the standardization function, and \(\beta \) is the substitutability parameter among the dimensions. By substitutability we mean when dealing with multiple dimensions, it is important to decide how the dimensions interact with each other. We have taken moderate substitution of dimensions (\(\beta = -1 \)), that is, we assume that less inequality in one dimension moderately offsets the inequality in another dimension.

After having done this, the multidimensional Atkinson inequality measure is calculated as follows:

\[
I^A = 1 - \left[\frac{1}{n} \sum_i \left(\frac{S_i}{\mu} \right)^{1-\epsilon} \right]^{1/(1-\epsilon)}, \epsilon \neq 1,
\]

\[
I^A = \frac{1}{n} \sum_i \log \left(\frac{S_i}{\mu} \right), \epsilon = 1,
\]

where \(\mu \) is the mean of the well-being measure, \(S_i \) and \(\epsilon \) is the inequality aversion parameter. Inequality aversion is a measure of how society feels about distributions. If \(\epsilon = 0 \), there is no aversion to inequality and the Atkinson Index is zero. As \(\epsilon \) increases, inequality aversion increases, and the Atkinson Index increases. The preferred specification is the multidimensional Atkinson Index with moderate inequality aversion (\(\epsilon = 2 \)) and moderate substitution of dimensions (\(\beta = -1 \)).

To avoid value judgements about which indicator is more important than the other, we take equal weighting of dimensions.

RESULTS

a. Policy Trend in the higher education sector in West Bengal: Education is currently included in the Concurrent List of the Seventh Schedule of the Indian Constitution. It is a responsibility to be shared between the Centre and the states. Thus, the policy trend prescribed by the state government of West Bengal is just as important as is the policy framework of the Central Government. So, this section is devoted to studying the higher education policies of the state of West Bengal and any conflicts thereof with the Central Government.
Post-Independence, West Bengal, though lost half its soul due to division, continued to contribute to the higher education of India. Indian Institute of Technology Kharagpur, and Indian Institute of Management Calcutta, the first among the eminent league of IIT and IIM were set up in 1951 and 1961 respectively. National Institute of Technology, Durgapur is among the first Regional Engineering Colleges established in India and was founded in 19603. Calcutta School of Tropical Medicine recently celebrated its centenary and was one of the leading bio-medical research institute with seven FRS (Fellow of the Royal Society) and director, Ronald Ross, who got a Nobel Prize for his work on malaria parasite.

Dr Bhabatosh Datta Commission Report (1984) and Dr Ashok Mitra Commission Report (1991) have immensely contributed to the current rejuvenation of the state higher education. Dr Mitra had suggested to narrow the widening gap in the spread of higher education in Bengal. Colleges were proposed to be modernized through the right renovation and addition of appropriate books and equipments. The nineties decade also saw the diversification of modern subjects, the permission granted to some colleges to run post graduate programmes. Proper steps were recommended to accommodate such advancements. The State Government came forward to build a cultural complex at the Bhavan under Rabindra Bharati University and also steps were taken to convert Shibpur B.E College to a deemed university. All the recommendations of the Education Commission headed by Dr Ashok Mitra were under active consideration of the state government. For better monitoring, all wings of the higher education were brought under a single campus at Bikash Bhavan, Salt Lake in 1994. In 1995, the West Bengal State Council of Higher Education was founded by statute of the West Bengal Legislative Assembly and started functioning full-fledgedly. New courses, arts and vocational studies, were introduced all over West Bengal. Expansion of the colleges and universities was proposed and taken up. In 1997-98 ten new colleges were established. New subjects like computer science, electronics and biotechnology were introduced at the undergraduate level. Tourism and travel management, physical education, forestry and wildlife management were among the newly introduced courses in the government colleges. In 2000, West Bengal National Institute of Juridical Sciences began its operation.

The Millennium year 2000 and the next decade also saw revival of the curriculum in various courses, introduction of P.G. Courses in a number of colleges. In 2004, Presidency College was selected by the UGC under ‘Potential of Excellence’ Scheme. St Xavier’s College became the first autonomous college of West Bengal. The year 2007 saw the establishment of 22 new general degree colleges in different districts of West Bengal. Under the recommendations of the Higher Education Council in 2003, West Bengal witnessed significant growth and development.

West Bengal continues to develop under the recommendations of the latest Education Commission which submitted its report in 2015 and presents a vision and roadmap for 2020-2030. Under the four pillars, Excellence, Employability, Inclusiveness and Value Based Education, the report promises to take the higher education scenario of West Bengal to more advanced trajectories. Please refer to Table 1 for data on Education and Higher Education Expenditure of the Government of West Bengal.
Table 1 Education and Higher Education Expenditure of the Government of West Bengal

<table>
<thead>
<tr>
<th>Year</th>
<th>Education Budget as Percentage of total Budget</th>
<th>Higher education budget as percentage of Education budget</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000-2001</td>
<td>15.10%</td>
<td>14.20%</td>
</tr>
<tr>
<td>2001-2002</td>
<td>14.80%</td>
<td>13.90%</td>
</tr>
<tr>
<td>2002-2003</td>
<td>15.40%</td>
<td>14.20%</td>
</tr>
<tr>
<td>2003-2004</td>
<td>13.60%</td>
<td>13.90%</td>
</tr>
<tr>
<td>2004-2005</td>
<td>12.80%</td>
<td>13.40%</td>
</tr>
<tr>
<td>2005-2006</td>
<td>14.80%</td>
<td>12.90%</td>
</tr>
<tr>
<td>2006-2007</td>
<td>15.90%</td>
<td>11.90%</td>
</tr>
<tr>
<td>2007-2008</td>
<td>15.00%</td>
<td>12.20%</td>
</tr>
<tr>
<td>2008-2009</td>
<td>15.60%</td>
<td>12.30%</td>
</tr>
<tr>
<td>2009-2010</td>
<td>17.10%</td>
<td>14.00%</td>
</tr>
<tr>
<td>2010-2011</td>
<td>17.90%</td>
<td>14.00%</td>
</tr>
</tbody>
</table>

Source: West Bengal State Higher Education Plan (2014)

b. Overall Comparison of West Bengal vis-à-vis India: Figure 1 shows that the Gross Enrolment Ratio in West Bengal has consistently been substantially below the All-India level. West Bengal is not a good performer as far as higher education participation is concerned. It is established in Figure 1.

Figure 1 Gross Enrolment Ratio in Higher Education

Table 2 gives the Sopher’s Index values with respect to participation, attainment and labour market outcome indicators. Figures 2, 3 and 4 show the path traced by the Sopher’s Index of these indicators over time. While participation rates show substantial reduction in disparity across India and West Bengal, educated unemployment and attainment are showing an increasing trend in disparity, that is, West Bengal educated unemployment rate is increasing and outturn percentage is falling vis-a-vis India. Note that for the educated unemployment rate a higher value is a bad outcome, so, initially it is positive means India’s educated unemployment rate is higher than that of West Bengal, but then it becomes negative, implying West Bengal’s educated unemployment rates are higher than that of India.
Table 2 Sopher's Index of Disparity between West Bengal vis-à-vis India

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Higher Education Participation</td>
<td>Gross Enrolment Ratio</td>
<td>0.23</td>
<td>0.18</td>
<td>0.17</td>
<td>0.19</td>
<td>0.18</td>
<td>0.18</td>
<td>0.17</td>
<td>0.18</td>
<td>0.17</td>
</tr>
<tr>
<td>Higher Education Attainment</td>
<td>Outturn as percentage of eligible population</td>
<td>-</td>
<td>0.11</td>
<td>0.18</td>
<td>0.21</td>
<td>0.27</td>
<td>0.27</td>
<td>0.28</td>
<td>0.26</td>
<td>0.26</td>
</tr>
<tr>
<td>Labour Market Outcome</td>
<td>Educated unemployment rate</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.038</td>
<td>-0.20</td>
<td>-0.001</td>
<td></td>
</tr>
</tbody>
</table>

Source: Author's Calculations

Figure 2 Sopher's Index for Gross Enrolment Ratio
Figure 3: Sopher's Index for Outturn Percentage

Figure 4: Sopher's Index for educated unemployment

Figure 5: Sopher's Index for educated unemployment
Figure 5 shows the gender parity index of India and West Bengal. The state has yet at par with India as far as gender parity is concerned, though there is a tendency to converge over time.

c. Overall Growth in participation and infrastructure compatibility testing: The growth rates of higher education enrolment, eligible population, and colleges is plotted in Figure 6. It is seen that eligible population has grown fairly steadily over the years, while growth rate of enrolment is showing fluctuations, as also growth rate of colleges. Particularly, there is a sharp drop in both enrolment and infrastructure in 2015-16, after which it again picks up. The reasons for these fluctuations have not been investigated in this study, and is left for future research. Also as seen in Table 3, there is no significant difference between growth rate of enrolment and that of colleges, showing they are growing at the same pace. However, the difference between growth rate of eligible population and that of colleges is significant at 5% level of significance, showing that the growth rate of colleges is outpacing the growth rate of eligible population.

Figure 6: Growth rates of Eligible Population, Enrolment and Colleges compared
Table 3 Paired Samples Test

<table>
<thead>
<tr>
<th>Pair</th>
<th>Paired Differences</th>
<th>t</th>
<th>df</th>
<th>Sig. (2-tailed)</th>
<th>Mean</th>
<th>Std. Deviation</th>
<th>Std. Error Mean</th>
<th>95% Confidence Interval of the Difference</th>
<th>Lower</th>
<th>Upper</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Growth Rate Of Enrolment – Growth Rate Of Colleges</td>
<td>-1.24</td>
<td>5.56065</td>
<td>2.10173</td>
<td>-</td>
<td>6.38275</td>
<td>3.90275</td>
<td>-</td>
<td>.590</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>Growth Rate Of Eligible Population – Growth Rate Of Colleges</td>
<td>-6.00</td>
<td>4.02122</td>
<td>1.51988</td>
<td>-</td>
<td>9.71909</td>
<td>2.28107</td>
<td>-</td>
<td>3.95</td>
<td>6</td>
</tr>
</tbody>
</table>

Source: Author’s Calculations

d. Gross Enrolment Ratio and Colleges Per Lakh Eligible Population for the districts for 2011-12 and 2018-19: Figure 7 shows the calculated GER for the districts of West Bengal over the two time periods 2011-12 and 2018-19. The figure gives the picture of disparity across the districts of West Bengal.

![Figure 7 Gross Enrolment Ratio of Districts of West Bengal](image_url)

Figure 7 Gross Enrolment Ratio of Districts of West Bengal

e. Cluster Analysis of the Districts of West Bengal: The descriptive statistics of the indicators are presented in tables 4 and 5.
Table 4 Descriptive Statistics of the indicators in 2011-12

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>Minimum</th>
<th>Maximum</th>
<th>Mean</th>
<th>Std. Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>GER</td>
<td>19</td>
<td>7.51</td>
<td>35.34</td>
<td>13.6</td>
<td>6.40841</td>
</tr>
<tr>
<td>CollegesPerLakhPopulation</td>
<td>19</td>
<td>4.00</td>
<td>42.00</td>
<td>12</td>
<td>8.20783</td>
</tr>
</tbody>
</table>

Table 5 Descriptive Statistics of the indicators in 2018-19

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>Minimum</th>
<th>Maximum</th>
<th>Mean</th>
<th>Std. Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>GER</td>
<td>19</td>
<td>9.74</td>
<td>42.67</td>
<td>19.3</td>
<td>7.16515</td>
</tr>
<tr>
<td>CollegesPerLakhPopulation</td>
<td>19</td>
<td>6.00</td>
<td>34.00</td>
<td>13</td>
<td>6.24921</td>
</tr>
</tbody>
</table>

Source: Author’s Calculations

In 2011-12, four distinct clusters are formed. Kolkata (marked green in the map in Figure 8) enjoys special position with very high values of the two indicators, and is different from the other three clusters. Darjeeling and Bardhaman (marked yellow in the map) form a cluster, while Dakshin Dinajpur, Coochbehar, Maldah and Jalpaiguri (marked orange in the map) form another cluster. Both these two clusters have high values of the two indicators, though not as high as those of Kolkata. The fourth cluster (marked red in the map), comprising the remaining 12 districts are comparatively lagging behind the previous three clusters.

Figure 8 Map of Clusters in 2011-12

Map is designed taking help of the website https://gramener.com/indiamap/
In 2018-19, Kolkata (marked green in the map in Figure 9) continues to enjoy its supreme position ahead of all other districts. Darjeeling is the only other district (marked yellow in the map) found to be a close competitor of Kolkata. Rest of the districts (marked red) form the third cluster and are far behind Kolkata & Darjeeling in the parameters.

Figure 9 Map of clusters in 2018-19

Map is designed taking help of the website https://gramener.com/indiamap/

f. Inequality Indices for district-wise disparity in West Bengal: Table 6 shows the inequality indices by individual indicators. Considering absolute values of Gini index, the gross enrolment ratio is less unequal than colleges per lakh eligible population across the districts for both the years, though both assume high values. There has been a reduction in gini index for both the parameters in 2018-19 but the change is statistically insignificant, implying inequality has not reduced with respect to participation and infrastructure.
Table 6 Inequality by Individual Indicators

<table>
<thead>
<tr>
<th>Indicator</th>
<th>Variable Used</th>
<th>Gini index 2011-12</th>
<th>Gini index 2018-19</th>
<th>Difference</th>
<th>Percentage change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Higher Education Infrastructural Indicator</td>
<td>No. of Colleges per lakh eligible population</td>
<td>0.291</td>
<td>0.224</td>
<td>-0.067*</td>
<td>-23.02*</td>
</tr>
<tr>
<td>Higher Education Participation Indicator</td>
<td>Gross Enrolment Ratio in higher education</td>
<td>0.215</td>
<td>0.175</td>
<td>-0.04*</td>
<td>-18.6*</td>
</tr>
</tbody>
</table>

*Statistically insignificant at 5% level of significance
Source: Author’s Calculations

Table 7 presents the multidimensional inequality indices. The multidimensional inequality indices comparatively are lower than univariate indices, showing overall lesser inequality across the districts. There is a marginal fall in the index over the time period, but it is statistically insignificant, showing the extent of inequality has not fallen over the years.

Table 7 Multidimensional Inequality

<table>
<thead>
<tr>
<th></th>
<th>2011-12</th>
<th>2018-19</th>
<th>Difference</th>
<th>Percentage Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moderate Inequality aversion $\epsilon = 2$</td>
<td>0.1451</td>
<td>0.1064</td>
<td>-0.0387*</td>
<td>-26.67*</td>
</tr>
<tr>
<td>Moderate Substitutability $\beta = -1$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Statistically insignificant at 5% level of significance
Source: Author’s Calculations

MAIN FINDINGS OF THE PAPER

West Bengal with its very strong legacy in higher education is analyzed from various angles and with the help of various indicators that signify the performance of the state in higher education in recent years. From policy perspective, the paper has shown that the government of West Bengal is in no dearth of policies that help enhance the higher education parameters. The state has just stepped into the stage of massification of higher education and has experienced expansion in the higher education infrastructure, though mostly not at par with all-India level. Sopher’s Index assumes high values for participation, attainment and labour market outcome indicators, proving the prevalence of disparity between West Bengal vis-à-vis All-India level. However, while participation rates show substantial reduction in disparity across India and West Bengal, educated unemployment and attainment are showing an increasing trend in disparity, that is, West Bengal’s educated unemployment rate is increasing and outturn percentage is falling vis-s-vis India. Gender Parity Index of West Bengal is also lagging behind the overall Gender Parity index of India, though there is a tendency to converge over time. When analyzed whether the infrastructure can support massification of higher education in West Bengal, the study revealed that there is no significant difference between growth rate of enrolment and that of colleges, showing they are growing at the same pace. However, the difference between growth rate of eligible population and that of colleges...
is significant at 5% level of significance, showing that the growth rate of colleges is outpacing the growth rate of eligible population. When we glanced at the within state disparity, cluster analysis shown the existence of disparity across the districts of West Bengal. The extent of disparity across the districts was quantified with unidimensional and multidimensional indices, which also showed evidence of disparity across the districts and no significant reduction in inequality over the years from 2011-12 to 2018-19.

CONCLUSION
Thus, the paper has identified the roadblocks on the path of achieving a higher trajectory of growth and development in higher education for the state of West Bengal. There is need to focus on achieving the All-India targets to benefit the whole state and also need for reducing district-wise disparity across the state, so that the benefits reach every corner of the state.

The principal recommendations are as follows:

- Rapid massification and expansion are required because bulk of the population is young and aspiring to join higher education. Thus, public expenditure on higher education must be enhanced to adequate level.
- More inclusive massification is the burning need of the hour, or else inequality among the young population will cause the state serious consequences in the coming years. So, policies which ensure bridging the gap across districts, rural-urban regions, gender, caste, religion, economic groups are extremely needed at this moment.
- Quality should not be compromised for rapid expansion.
- Plans should be made by the government on the principle of zero base budgeting which will facilitate yearly upgradation of plans and immediate implementation of the same.

REFERENCES

